Table 3. ¹H NMR data at 298 K and possible values of the torsion angle φ

Residue	Proton	Chemical shift (p.p.m.)	Coupling constant (Hz)	δNH/dT (×10 ⁻³ p.p.m. K ⁻¹)	φ(°)
Gly	α,	3-80	5.5 (J _{NH-a})		±68, -128
Gly	α ₂ ΝΗ α ₁	5.34 3.93	5.5 (J _{NH-q.})	6.0	±63, -133
	a2 NH	3.92 7.02	$5.0 (J_{\mathrm{NH}} - \alpha_2)$	8.0	
Phe	а В.	4.82 3.12	$8.0 (J_{\rm NH-\alpha}) 6.0 (J_{\rm n} \rho)$		-94, -146
	β_2 NH	3.04 6.81	$6.5 \left(J_{\alpha-\beta_2}^{\alpha-\beta_1}\right)$	9.0	
Boc Ethyl ester	CH, CH, CH,	1.45 1.22 4.14			

Estimated errors of chemical shift and coupling constant are \pm 0.02 p.p.m. and \pm 0.2 Hz respectively. The values of δ NH/dT were measured from the variation of the NH proton at 273, 283, 288, 293, 298 and 303 K.

Fig. 3. The molecular arrangement of Boc-Gly-Gly-Phe-OC₂H₅ viewed along the a axis. The hydrogen bonds are shown by dotted lines.

The molecular arrangement projected along the *a* axis is shown in Fig. 3, in which the dotted lines represent hydrogen bonds. The folded Gly-Gly moiety of the molecule is arranged around the 2_1 screw axis parallel to the *b* axis; the molecule is linked with the neighboring molecules by three hydrogen bonds between peptide amino and carboxyl groups [N(1)...O(4) 2.822 (6), H(1)...O(4) 1.93 (6) Å, $\angle N(1)$ -H(1)...O(4) 169 (6)°; N(2)...O(3) 2.865 (5), H(2)...O(3) 2.15 (7) Å, $\angle N(2)$ -H(2)...O(3) 136 (6)°; N(3)...O(3) 2.916 (6), H(3)...O(3) 1.99 (6) Å, $\angle N(3)$ -H(3)...O(3) 162 (6)°].

References

- ASHIDA, T., YAMANE, T. & TANAKA, I. (1980). Nippon Kessho Gakkaishi, 22, 187–202.
- FOURNIE ZALUSKI, M.-C., PRANGÉ, T., PASCARD, C. & ROQUES, B. P. (1977). Biochem. Biophys. Res. Commun. 79, 1199–1206.
- GARBAY-JAUREGUIBERRY, C., ROQUES, B. P., OBERLIN, R., ANTEUNIS, M. & LALA, A. K. (1976). Biochem. Biophys, Res. Commun. 71, 558-565.
- HUGHES, J., SMITH, T. W., KOSTERLITZ, H. W., FOTHERGILL, L. A., MORGAN, B. A. & MORRIS, R. H. (1975). Nature (London), 258, 577-579.
- International Tables for X-ray Crystallography (1974). Vol. IV, pp. 72–73. Birmingham: Kynoch Press.
- KHALED, M. A., LONG, M. M., THOMPSON, W. O., BRADLEY, R. J., BROWN, G. B. & URRY, D. W. (1977). Biochem. Biophys. Res. Commun. 76, 224–231.
- KOPPLE, K. D., GO, A., LOGAN, R. H. & SAVRDA, J. (1972). J. Am. Chem. Soc. 94, 973-981.
- MAIN, P., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J. P. & WOOLFSON, M. M. (1978). MULTAN 78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- PRANGÉ, T. & PASCARD, C. (1979). Acta Cryst. B35, 1812-1819.
- RAMACHANDRAN, G. N., CHANDRASEKARAN, R. & KOPPLE, K. D. (1971). Biopolymers, 10, 2113–2131.
- RAMACHANDRAN, G. N., RAMAKRISHNAN, C. & SASISEKHARAN, V. (1963). J. Mol. Biol. 7, 95–99.
- SMITH, G. D. & GRIFFIN, J. F. (1978). Science, 199, 1214-1216.
- The Universal Crystallographic Computing System (1979). Library of Programs, Computing Center, Osaka Univ.

Acta Cryst. (1983). C39, 112–114

Structure of o-Nitroaniline Hydrochloride, $C_6H_7N_2O_2^+.Cl^-$

By G. PLOUG-SØRENSEN AND E. KROGH ANDERSEN

Department of Chemistry, The University of Odense, Campusvej 55, 5230 Odense M, Denmark

(Received 1 April 1982; accepted 5 October 1982)

Abstract. $M_r = 174.6$, orthorhombic, *Pbca*, a = 1.562 (1) Mg m⁻³, λ (Mo Ka) = 0.71069 Å, $\mu = 7.878$ (2), b = 7.940 (2), c = 23.73 (1) Å, V = 0.46 mm⁻¹, T = 295 K. Final R = 0.07 for 1621 1484.3 (8) Å³, Z = 8, $D_m = 1.560$, $D_x =$ observed reflexions. Layers of anilinium ions are held 0108-2701/83/010112-03\$01.50 © 1983 International Union of Crystallography

together by ionic forces and hydrogen bonds (average N-H····Cl distance is 3.12 Å). The nitro group is twisted by 26.1° with respect to the ring plane, presumably to relieve overcrowding of the nitro and amino groups.

Introduction. As a part of a programme of structure determinations of substituted anilines and substituted aniline hydrochlorides the structure of the title compound is reported. The aim of the programme is to determine the changes in molecular structure of anilines on protonation.

Experimental. Crystals were obtained by adding gaseous hydrogen chloride to a solution of onitroaniline in ether. This product was recrystallized from a mixture of ethanol and concentrated hydrochloric acid. The recrystallized product was dried in a desiccator, first over potassium hydroxide and then over phosphorus pentoxide. The formula weight was determined to 178 (theoretical value 174.59) by titration with 0.1 M sodium hydroxide.

Colourless prisms, $0.7 \times 0.4 \times 0.25$ mm, Enraf-Nonius AD 3, graphite-monochromatized Mo $K\alpha$, lattice parameters from Guinier-Hägg photographs with Cu $K\alpha_1$ ($\lambda = 1.54051$ Å) and SiO₂ as internal standard, 2128 unique reflections $(h, k, l \ge 0)$ with $2.5 < \theta <$ 30°, 1621 with $I > 2.5 \sigma(I)$, ω scan with 2.0° interval. standard reflection 308 stable, systematic absences Okl with k odd, h0l with l odd and hk0 with h odd, Lp correction, absorption ignored; direct methods, anisotropic full-matrix least-squares refinements of non-H atoms, four fixed H included (H in NH₃⁺ not locatable), $\sum w(\Delta |F|)^2$ minimized, final R = 0.074 and $R_w =$ $\overline{0.115}$, weights $w = 1/(12.0 + |F_o| + 0.06 |F_o|^2)$ gave average $w \Delta (|F|)^2$ almost independent of sin θ and $|F_{o}|$, scattering factors from International Tables for X-ray Crystallography (1962), F(000) = 720, computer programs from XRAY system (Stewart, Machin, Dickinson, Ammon, Heck & Flack, 1976).

Discussion. Final atomic coordinates and equivalent isotropic temperature factors are given in Table 1.

The content of one unit cell is shown in Fig. 1. The crystal structure is composed of layers of anilinium ions. These layers are held together by ionic forces and hydrogen bonds. The H atoms at the NH₃⁺ group could be located unambiguously in the difference electron density maps, but the NH₃⁺ group appears to be a donor in three hydrogen bonds in which chloride ions are acceptors. The average distance between N

atoms and the accepting chloride ions is 3.12 Å. Fuller (1959) found the mean value of this type of hydrogen bond to be 3.19 ± 0.07 Å.

Details of the molecular structure of o-nitroaniline hydrochloride are given in Table 2 and in Fig. 2(a) and (b). From Table 2 it is concluded that the aromatic ring is planar, and N(2) is out of the plane defined by C(2)O(1)O(2). The nitro group is twisted around the C(2)-N(2) bond (dihedral angle between the ring

Table 1. Final atomic coordinates $(\times 10^4)$ and equiva-								
lent isotropic temperature factors (\dot{A}^2) with e.s.d.'s in								
parentheses								

	$B_{eq} =$	$\frac{4}{3}\sum_{i}\sum_{j}b_{ij}(\mathbf{a}_{i}\cdot\mathbf{a}_{j}\cdot\mathbf{a}$,).	
	x	y y	z	Bea
Cl(1)	1994 (1)	2109 (1)	7144 (1)	2.84 (4)
C(1)	1623 (5)	356 (5)	3546 (2)	1.94 (12)
C(2)	1265 (5)	-388 (5)	4068 (2)	2.14 (13)
C(3)	2549 (7)	-947 (6)	4421 (2)	2.83 (16)
C(4)	4207 (6)	-738 (6)	4256 (2)	3.00 (17)
C(5)	4579 (5)	6 (7)	3745 (2)	2.91 (17)
C(6)	3299 (5)	538 (6)	3389 (2)	2.54 (15)
N(1)	324 (4)	858 (5)	3144 (1)	2.41 (13)
N(2)	-463 (5)	-526 (5)	4274 (1)	2.80 (14)
O(1)	-1493 (4)	490 (6)	4101 (2)	3.97 (16)
O(2)	-763 (5)	-1609 (6)	4629 (2)	4.73 (19)

Table 2. Deviations in Å of atoms from planes through the o-nitroanilinium ion

The mean e.s.d. on the distances of C, O and N atoms from the plane is 0.005 Å.

Plane (I): C(1)-C(6)

C(1), -0.000; C(2), 0.006; C(3), -0.005; C(4), -0.001; C(5), 0.006; C(6), -0.006; H(3), 0.175; H(4), 0.193; H(5), 0.124; H(6), 0.106; N(1), -0.081; N(2), 0.094; O(1), 0.622; O(2), -0.316

Plane (II): C(2), O(1), O(2)

N(2), -0.021

Fig. 1. The structure viewed down the b axis. Contact distances are in Å; e.s.d.'s are 0.004 Å.

^{*} Lists of structure factors, anisotropic temperature parameters and H-atom parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 38164 (11 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Fig. 2. The molecular structure of *o*-nitroaniline hydrochloride. (*a*) Bond lengths in Å. (*b*) Angles in degrees. (Values in parentheses are standard deviations.) plane and the nitro group $26 \cdot 1^{\circ}$). This is probably caused by overcrowding of the nitro and amino groups. The angle N(1)-C(1)-C(2) is $5 \cdot 7^{\circ}$ larger than the angle N(1)-C(1)-C(6) and the N(1) and N(2) atoms are bent out of the ring plane in opposite directions [N(1) by -0.08, N(2) by +0.09 Å]. The C(1)-C(2) bond is significantly longer than the other five C-C bonds. The latter bonds appear to be of equal length.

References

FULLER, W. (1959). J. Phys. Chem. 63, 1705–1717. International Tables for X-ray Crystallography (1962). Vol. III,

201-209. Birmingham: Kynoch Press. STEWART, J. M., MACHIN, P. A., DICKINSON, C. H., AMMON, H.,

STEWART, J. M., MACHIN, P. A., DICKINSON, C. H., AMMON, H., HECK, H. & FLACK, H. (1976). The XRAY 76 system. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland, USA.

Acta Cryst. (1983). C39, 114–117

Structures of 1-[(2S,3S)-2-(N,N-Dibenzylamino)-3-methyl-1-pentyl]pyridinium p-Toluenesulphonate, $C_{25}H_{31}N_{2}^{+}$, $C_{7}H_{7}O_{3}S^{-}$, and 1-[(2S)-2-(N,N-Dibenzylamino)-1-propyl]pyridinium p-Toluenesulphonate, $C_{22}H_{25}N_{2}^{+}$, $C_{7}H_{7}O_{3}S^{-}$

By Hans Razenberg, Jan A. Kanters, Jean C. Schoone and Albert J. M. Duisenberg

Structural Chemistry Group, Rijksuniversiteit Utrecht, Transitorium 3, Padualaan 8, 3508 TB Utrecht, The Netherlands

(Received 12 July 1982; accepted 1 October 1982)

Abstract. $C_{25}H_{31}N_{+}^{+}C_{7}H_{7}O_{3}S^{-}$ (ILO), $M_{r} = 530.74$, monoclinic, $P_{2_{1}}$, a = 11.551 (1), b = 10.428 (1), c = 12.357 (1) Å, $\beta = 94.72$ (1)°, V = 1483.4 Å³, Z = 2, F(000) = 568, $D_{x} = 1.147$ Mg m⁻³, λ (Mo Ka) = 0.71069 Å, μ (Mo Ka) = 0.146 mm⁻¹, final $R = [\sum(|F_{o}| - |F_{c}|)/\sum F_{o}] = 0.042$ for 1733 unique reflections. $C_{22}H_{25}N_{+}^{+}C_{7}H_{7}O_{3}S^{-}$ (ALO), $M_{r} = 488.64$, orthorhombic, $P_{21}_{21}_{21}$, a = 15.225 (6), b = 9.663 (5), c = 17.822 (16) Å, V = 2622 (4) Å³, Z = 4, F(000) = 1040, $D_{x} = 1.190$ Mg m⁻³, λ (Mo Ka) = 0.71069 Å, μ (Mo Ka) = 0.158 mm⁻¹, final R = 0.045 for 989 unique reflections. Both ILO and ALO are salts composed of a positively charged pyridinium moiety and a negatively charged tosyl group. With the exception of one of the phenyl rings, the structures of the pyridinium moieties of ILO and ALO are almost superimposable. The conformation about the C–C bond connecting the amino-group and pyridinium-ring N atoms is *gauche*, which results in crowded structures and short contacts between these N atoms, 2.926 (4) and 2.908 (11) Å for ILO and ALO respectively.

Introduction. Treatment of N,N-dibenzyl-L-isoleucinol with *p*-toluenesulphonyl chloride in pyridine did not result in the expected tosyl derivative, but yielded a crystalline solid of composition $C_{32}H_{38}N_2O_3S$ (within 0.1%) according to elemental analysis. Conductivity experiments and mass spectroscopy indicated the

0108-2701/83/010114-04\$01.50

© 1983 International Union of Crystallography